Overblog
Suivre ce blog Administration + Créer mon blog

Recherche

*****

Les aides en vidéo

Philippe Mercier

 

Son forum d'aide

 

calculette scientifique
Wiris

flèches vers

Articles Récents

Des rubriques et des lieux

3 décembre 2016 6 03 /12 /décembre /2016 13:00

Premier défi du mois de décembre (du calcul)

--------------------------------------------------

Semaine 49 :

— Vos enfants grandissent si vite !

— Ils ne prennent qu’un an chaque année, répond la mère.

— Certes, mais en un an, le produit de leurs âges augmentera de 82 et en deux ans de 200 ...

Quels âges ont les trois enfants ?

---------------------------------------------------

 

Je propose ici une méthode par essais successifs, en balayant l'ensemble de toutes les valeurs possibles pour l'âge des enfants (en supposant qu'ils ont moins de 16 ans*)

---------------------------------

[chargement peut-être long
parfois geogebra en ligne
a quelques lenteurs]

___

On démontre assez facilement que la somme de leurs âges respectifs est égale à 15 en développant

(A1+1)(A2+1)(A3+1) - A1A2A3 = 82    équation 1

et

((A1+2)(A2+2)(A3+3) - A1A2A3 = 200   équation 2

par combinaison (équation 2  /2 - équation 1) on obtient
A1+A2+A3 + 3 = 18

 

Si le curseur du bas (positions 0 et 1 pour l'animation)

n'apparaît pas

voir cette version du fichier geogebra

https://www.geogebra.org/m/AhGNpnBA

 

 

-----------

Voir d'autres méthodes de résolutions (moins brutales, avec un soupçon de tâtonnement tout de même) ici http://images.math.cnrs.fr/Decembre-2016-1er-defi.html

Partager cet article

Repost0